1/4x^2+1-16=0

Simple and best practice solution for 1/4x^2+1-16=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x^2+1-16=0 equation:



1/4x^2+1-16=0
Domain of the equation: 4x^2!=0
x^2!=0/4
x^2!=√0
x!=0
x∈R
We add all the numbers together, and all the variables
1/4x^2-15=0
We multiply all the terms by the denominator
-15*4x^2+1=0
Wy multiply elements
-60x^2+1=0
a = -60; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-60)·1
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{15}}{2*-60}=\frac{0-4\sqrt{15}}{-120} =-\frac{4\sqrt{15}}{-120} =-\frac{\sqrt{15}}{-30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{15}}{2*-60}=\frac{0+4\sqrt{15}}{-120} =\frac{4\sqrt{15}}{-120} =\frac{\sqrt{15}}{-30} $

See similar equations:

| x-1=-9-3x | | 3(x+25)-(5x-1)=-10 | | 9x-2=135 | | 6(2x-4)=-48 | | -(1-8x)=-9+6x | | 9=16y=51 | | 9a-5a+3a-6a+1=18 | | 19z+9=2(11z) | | 5(r-1)=2(r+2)+4r | | 100=200-2p | | 3x^2-1-36=0 | | 22=3x-22 | | 2x+3=76 | | 7(-2x-2)=-84 | | 17y+10=2(18y-14) | | 8m-2m-3m-2=7 | | 17x+36=-100 | | 91=7(1+3n) | | -9+3x=10x+12 | | 3b=5b+16 | | u-2=2(u-48) | | 6z+3-42=9 | | 5a+9=8a=3 | | 3b=56+16 | | 6(-7+x)=-36 | | 14z+74=2(2z+42) | | 75(n-4)=450 | | -9=4.5y | | .5(4x+16)=32 | | 4a-2=30-7 | | 3/2(c-5=-6 | | 31-s=14 |

Equations solver categories